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Abstract

Siegel (1995) has developed a technique with which the systematic risk of a security
(beta) can be estimated without recourse to historical capital market data. Instead, beta
is estimated implicitly from the current market prices of exchange options that enable the
exchange of a security against shares on the market index. Because this type of exchange
options is not currently traded on the capital markets, Siegel’s technique cannot yet be
used in practice. This article will show that beta can also be estimated implicitly from the
current market prices of plain vanilla options, based on the Capital Asset Pricing Model.
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1 Introduction

The Capital Asset Pricing Model (CAPM) of Sharpe (1964) and Lintner (1965) con-
tinues to be of central importance to the valuation of risk-bearing securities, in theory as
well as in practice. According to the CAPM, the expected rate of return on a security
depends primarily on its systematic risk (beta), which is normally estimated by means
of a regressive analysis of historical capital market data. Of all of the numerous empir-
ical tests of the CAPM, the study by Fama and French (1992) in particular generated
much attention. According to this study, beta has hardly any explanatory power for
the expected rate of return on a security. In fact, the expected rate of return depends
much more on the size of a company and the book-to-market ratio. Berk (1995) showed
nonetheless that these effects can also be traced back to a flawed measurement of beta.1

Statistical errors can be caused in particular by the fact that beta changes through time.2

In order to avoid this problem, Siegel (1995) proposes a method with which beta can be
estimated from current options prices, without recourse to historical capital market data.
However, practical application of this method requires that exchange options be traded
that entitle the exchange of securities for shares on the market index. Presently, such
options are not traded on the capital market. The purpose of this paper is to universalize
Siegel’s method so that beta can also be estimated from plain vanilla options.

The Siegel (1995) method is based on estimation of implicit volatility according to
Latané and Rendleman (1976), whose technique is considered the standard in option
pricing today.3 Siegel (1995) ties this technique together with the valuation of exchange
options according to Margrabe (1978) in order to estimate implicit beta. Siegel (1997),
Campa and Chang (1998), and Walter and Lopez (2000) use similar approaches to
obtain implied correlation of currencies from currency options. Recently, Skintzi and
Refenes (2005) propose a method in forecasting future index correlation called implied
correlation index that is also based on current option prices.

In this article the Siegel (1995) method will be universalized in that the implicit density
function of an underlying asset is estimated implicitly from the theoretical CAPM prices of
plain vanilla options.4 The beta of an underlying asset results from the moments of this
density function. The theoretical basis for calculation of implicit, risk-neutral density
functions originates from Ross (1976) and Breeden and Litzenberger (1978) and has
been used in numerous works to this day: Rubinstein (1994), Darman and Kani (1994),
Jackwerth and Rubinstein (1996), and Brown and Toft (1999) estimate implicit risk-
neutral density functions with the help of a modified binomial model (Implied Binomial
Trees). Shimko (1993), Jarrow and Rudd (1982), and Longstaff (1995) estimate the
price functions of options directly from their observed market prices, in dependence on

1Fama and French (2004) discuss the empirical problems that may be caused by difficulties in imple-
menting valid tests of the CAPM.

2Skintzi and Refenes (2005) and Longin and Solnik (2001), for example, observed that correlations of
stocks returns increase in highly volatile or bear markets.

3See Blair et al. (2001) for recent studies on the predictive ability of implied volatility.
4Dennis and Mayhew (2002) investigated the relative importance of beta in explaining the prices of

stock options traded on the Chicago Board Options Exchange.
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the exercise price, and from there derive risk-neutral density functions. Aı̈t-Sahalia and
Lo (2000) and Jackwerth (2000) determine a clear difference between risk-neutral and
subjective expectations and attempt to draw conclusions from this regarding the risk
aversion of market participants. Jackwerth (2000) arrives furthermore at the result that
the historical capital market rates of return are approximately lognormally distributed.

The notation and model assumptions are explained in section 2. In section 3, a model
is presented with which calls can be evaluated based on the CAPM when rates of return
are distributed lognormally. On this basis, it is possible to estimate beta implicitly from
the prices of ordinary calls in section 4. Section 5 summarizes the results of the article.

2 Assumptions and Notation

The valuation of options in section 3 is based on the assumptions of the one-period CAPM:

1. Risk-averse investors maximize the µ-σ-utility of their end-of-period wealth.

2. Investors have homogeneous expectations about assets returns; the instantaneous
rate of return on any asset and the market portfolio have a joint normal distribution.5

Investors may borrow or lend unlimited amounts at the risk-free rate.

3. Markets are frictionless. Information is costless and simultaneously available to all
investors. There are no market imperfections such as transaction costs, taxes, or
restrictions on short selling.

The following notation is used throughout the paper:

K Exercise price on an option

p(X̃c) Price of a call on an asset S with cashflow X̃c

p(X̃cm) Price of a call on the market index X̃m with cashflow X̃cm

p(X̃ce) Price of an exchange option call with cashflow X̃ce

p(X̃s) Price of an underlying asset S with cashflow X̃s

p(X̃m) Current Market index

ns Number of shares of asset S to be exchanged under the exchange option

nm Number of shares of the market index under the exchange option

R̃s Standardized cashflow of an underlying asset, R̃s = X̃s / p(X̃s)

R̃m Standardized cashflow of the market portfolio, R̃m = X̃m / p(X̃m)

βs Beta of an underlying asset S with respect to the market index

rf Instantaneous risk-free rate of interest

r̃s Instantaneous rate of return on asset S

r̃m Instantaneous rate of return on the market index

µs Expected instantaneous rate of return on asset S

5For a definition of bivariate normal distribution, see Appendix A.
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µm Expected instantaneous rate of return on the market index

σS Instantaneous variance of the rate of return on asset S

σm Instantaneous variance of the rate of return on the market index

ρ Instantaneous correlation between the rates of return on asset S and on the
market index

In the case of the given parameters for bivariate normal distribution of rates of return,
the following applies for the expected values, variances and covariances of the securities’
cash flow and market portfolio’s standardized cash flow6

E [X̃s] = p(X̃s) eµs+
1
2
σ2

s , (1)

E [R̃m] = eµm+ 1
2
σ2

m , (2)

Var [R̃m] = e2µm+σ2
m

(
eσ2

m − 1
)

, (3)

Cov [X̃s, R̃m] = p(X̃s) eµm+ 1
2
σ2

m+µs+
1
2
σ2

s (eρ σmσs − 1) . (4)

For the standard definition of beta, the following results in the case of bivariate normal
distribution7

βs =
Cov [R̃s, R̃m]

Var [R̃m]
=

eµs+
1
2
σ2

s · (eρ σsσm − 1)

eµm+ 1
2
σ2

m · (eσ2
m − 1)

. (5)

3 The Model

3.1 Option Pricing in an Incomplete Lognormal Market

In an incomplete lognormal market the CAPM may be used for option pricing.8 The
well-known certainty equivalent valuation formula of the single-period CAPM is9

p(X̃c) =
E [X̃c]− λ · Cov [X̃c, R̃m]

1 + r ∗f
where λ =

E [R̃m]− (1 + r ∗f )

Var [R̃m]
. (6)

In order to be able to apply this equation to the valuation of a call, the expected cash flow
of the call and the covariance between the cash flow of the call and the rates of return
on the market portfolio must first be determined. Under the assumption of lognormally

6The moments of lognormal distribution can be calculated with the help of the integrals (38), (39) and
(40) indicated in Appendix A.

7For a general definition of beta, see Copeland and Weston (1988), pg. 198.
8Options are redundant securities in a complete market. However, the empirical results of Vanden

(2004) indicate that options are nonredundant for explaining the returns on risky assets.
9See Copeland and Weston (1988), pg. 203.
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distributed rates of return, we derive10

E [X̃c] = p(X̃s) · eµs+
1
2
σ2

s · Φ (d1)−K · Φ (d2) , (7)

Cov [X̃c, R̃m] = p(X̃s) · eµs+
1
2
σ2

s+µm+ 1
2
σ2

m · (eρ σsσm · Φ (d3)− Φ (d1))

−K · eµm+ 1
2
σ2

m · (Φ (d4)− Φ (d2)) , (8)

d1 = (ln(p(X̃s)/K) + µs)/(σs) + σs, (9)

d2 = (ln(p(X̃s)/K) + µs)/(σs), (10)

d3 = (ln(p(X̃s)/K) + µs)/(σs) + σs + ρ σm, (11)

d4 = (ln(p(X̃s)/K) + µs)/(σs) + ρ σm. (12)

If we insert (7) and (8) in (6), after further conversion we get a representation that allows
a comparison with the valuation equation according to Black and Scholes (1973)11

p(X̃c) = p(X̃s) θ1 −K e−rf θ2 (13)

where θ1 = eµs+
1
2
σ2

s−rf

(
Φ (d1)− λ eµm+ 1

2
σ2

m (eρσsσmΦ (d3)− Φ (d1))
)

(14)

θ2 = Φ (d2)− λ eµm+ 1
2
σ2

m (Φ (d4)− Φ (d2)) . (15)

This model can be applied to the special case of complete markets. On complete markets,
a risk-neutral valuation always leads to the correct valuation result.12 In a risk-neutral
world, the rate of return of the expected cash flow of a given risk-bearing financial title
and that of the market portfolio equal the risk-free interest rate13

µs + σ2
s/2 = rf , (16)

µm + σ2
m/2 = rf . (17)

This correlation can also be intuitively justified. Market participants may only expect a
risk premium for their risk-bearing financial title if they cannot nullify the risk through
diversification of their portfolio. Because systematic risk can be nullified through diver-
sification in complete markets, the market price of the risk is zero. From (16) and (17)
follows λ = 0, θ1 = Φ (d1) and θ2 = Φ (d2). The valuation equation (13) is reduced
accordingly with risk-neutral valuation to

p(X̃c |λ = 0) = p(X̃s) Φ
(

ln(p(X̃s)/K)+rf+σ2
s/2

σs

)
−Ke−rf Φ

(
ln(p(X̃s)/K)+rf−σ2

s/2

σs

)
, (18)

which equals the valuation equation of Black and Scholes (1973).

10See Appendix B. Put prices follow from put-call parity.
11Ritchken (1985a) developed a similar valuation equation for options based on the CAPM. This model

is not consistent with the Black and Scholes (1973) model in the case of risk-neutral valuation,
however.

12See Cox and Ross (1976).
13If the expected instantaneous rate of return on a security equals µs and the rate of return is lognormally

distributed, then the rate of return on the expected cash flow equals µs + σ2
s .
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3.2 Pricing Options on the Market Index

Jarrow and Madan (1997) developed a valuation model for calls on the market index
that is also based on the assumptions of the CAPM and lognormally distributed rates of
return. If we use the notation established above, then the value of a call on the market
index equals14

p(X̃cm) = p(X̃m) θm1 −K e−rf θm2 (20)

where θm1 = eµm+ 1
2
σ2

m−rf

(
Φ (dm1)− λ eµm+ 1

2
σ2

m

(
eσ2

mΦ (dm3)− Φ (dm1)
))

, (21)

θm2 = Φ (dm2)− λ eµm+ 1
2
σ2

m (Φ (dm1)− Φ (dm2)) , (22)

dm1 = (ln(p(X̃m)/K) + µm + σ2
m) / (σm) , (23)

dm2 = (ln(p(X̃m)/K) + µm) / (σm) , (24)

dm3 = (ln(p(X̃m)/K) + µm + 2σ2
m) / (σm) . (25)

This valuation equation is solely a special case of (13); for calls on the market index, the
following apply: ρ = 1, µs = µm and σs = σm.

4 Implicit Beta

4.1 Estimating Beta Using Exchange Options

Siegel (1995) assumes that continuous security trading on perfect capital markets is pos-
sible.15 This standard assumption of options price theory enables a risk-neutral valuation
of options and is equivalent to the assumption of complete capital markets.16 Because
the theoretical option prices in the case of risk-neutral valuation are independent of the
correlation of cash flow of the underlying asset with that of the market portfolio, beta
cannot be implicitly estimated from simple options. Siegel (1995) therefore recourses to

14Jarrow and Madan (1997) define the parameter µm as the rate of return of the expected value, while
we use it to identify the expected rate of return. In order to establish comparability with our results,
the parameter µ must be replaced with µ + σ2/2 in the work by Jarrow and Madan (1997),

p(X̃cm) = (a + bK) p(X̃m) eµm+ 1
2 σ2

m Φ(dm1)− aKΦ(dm2)− b p(X̃m)2 e2(µm+σ2
m) (dm3) (19)

where a = (eσ2
m−rf − e−(µm+ 1

2 σ2
m)) / (eσ2

m − 1)

b = (eµm+ 1
2 σ2

m−rf − 1) / (p(X̃m) e2(µm+σ2
m) (eσ2

m − 1)) .

If we furthermore assume that the investor’s planning horizon and the time to maturity of the option
are identical, following elementary conversions, the valuation equation (20) results from the valuation
equation (19). However, for the special case of calls on the market index, the Ritchken (1985a) model
is not identical with the Jarrow and Madan (1997) model.

15See Assumption 1 in Siegel (1995).
16See Cox et al. (1979).
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exchange options, which securitize the right for exchange of a financial title for shares on
the market portfolio. The theoretical price of an exchange option in terms of risk-neutral
valuation depends on the correlation of the cash flow of a financial title with the rates of
return of the market portfolio and is therefore generally suitable for determining implicit
beta factors. The risk-neutral valuation of exchange options is based on Margrabe (1978),

p(X̃ce) = ns p(X̃s) Φ

(
ln
“

ns p(X̃s)

nm p(X̃m)

”
+ σ2

e/2

σe

)
− nm p(X̃m) Φ

(
ln
“

ns p(X̃s)

nm p(X̃m)

”
−σ2

e/2

σe

)
, (26)

whereby the volatility σe depends on the volatilities of the underlying assets and the
correlation of their rates of return,

σ2
e = Var [r̃s − r̃m] = σ2

s + σ2
m − 2 ρsm σs σm . (27)

Siegel (1995) assumes that three types of options are traded on the capital market:
options on a common asset, options on the market index, and options that entitle the
exchange of securities for shares on the market index. His idea for determination of
implicit beta factors consists of first estimating the volatilities of the two underlying
assets and the volatility σe of the exchange option implicitly from traded options. The
correlation coefficient is then derived from correlation (27),

ρsm = (σ2
s + σ2

m − σ2
e) / (2 σs σm). (28)

According to Siegel (1995), this results in the beta factor of the asset,

βSiegel

s := ρsm σs / σm = (σ2
s + σ2

m − σ2
e) / (2 σ2

m). (29)

Leland (1999) describes definition (29) as modified beta. Even in risk-neutral valuation,
this definition does not equal the standard definition of beta17

βs =
Cov [R̃s, R̃m]

Var [R̃m]
=

eρ σsσm − 1

eσ2
m − 1

. (30)

Regardless of this, from a practical view there is the problem - as Siegel (1995) himself
notes - that exchange options are not currently traded on the capital markets.

4.2 Estimating Beta Using Plain Vanilla Options

On incomplete markets, beta can be estimated implicitly with the valuation equations (13)
and (20). As a result of the state of data typically given on the capital market, a two-stage
process for estimating implicit beta is advisable. In a first step, expectations of the mar-
ket participant with regard to the market index are estimated. Based on the valuation
equation (20) for options on the market index, the sum of the squared relative differ-
ences between the empirical options prices p

(
X̃cm

)∗
and theoretical options prices (20) is

17Inserting (16) and (17) in (5) results in (30).
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minimized through selection of the parameter µ̂m and σ̂m,18

min
µm,σm

J∑
j=1

(
p
(
X̃cm

)∗ − p
(
X̃cm)

p
(
X̃cm)

)2

. (31)

Based on the parameters µ̂m and σ̂m, estimated in the first step, the parameters µ̂s and
σ̂s can be determined with the same method for any asset S ,

min
µs,σs

J∑
j=1

(
p
(
X̃c

)∗ − p
(
X̃c

)

p
(
X̃c

)
)2

(32)

Through the application of relative instead of absolute differences, it is avoided that
in-the-money options influence estimations of the parameters much stronger than out-of-
the-money options.

In the minimization, the correlation coefficient ρ̂ cannot be estimated independently of
the parameters µ̂s and σ̂s, as the CAPM equilibrium condition must be considered as an
additional condition for the underlying asset,

p(X̃s) =
E [X̃s]− λ · Cov [X̃s, R̃m]

1 + r ∗f
where λ =

E [R̃m]− (1 + r ∗f )

Var [R̃m]
. (33)

Following several conversions, inserting (1), (2), (3) and (4) in (33) results in

eµs+σ2/2 =
erf

(
eσ2

m − 1
)

(
eσ2

m − 1
)

+
(
e−(µm+ 1

2
σ2

m−rf ) − 1
)(

eρ σmσs − 1
) . (34)

Implicit beta (5) of an asset S can be calculated with the estimated parameters.19

5 Summary and Conclusions

This article presents a technique with which beta can be estimated implicitly from the
prices of plain vanilla options, without recourse to historical capital market data. The
fundamental idea resembles that of Latané and Rendleman (1976) in the estimation of
implicit volatilities from options prices: beta is estimated implicitly from options traded on
the capital market, under the assumption of normally distributed rates of return based on
the CAPM. Statistical errors that result from conventional regressive analysis of historical
data, that beta values change through time, can hereby be avoided. Likewise, as in the
estimation of implicit volatilities, the quality of the implicit beta depends on how well the
options price model that is applied can explain the prices of the traded options.

18This technique is also applied by Rubinstein (1994) for the estimation of implicit risk-neutral density
functions.

19In order to be able to calculate beta, (34) must be resolved accordingly,

ρ σm σs = ln


1 +

e2µm+σ2
m

(
eσ2

m − 1
)

eµm+ 1
2 σ2

m − erf

· eµs+ 1
2 σ2

s − erf

eµm+ 1
2 σ2

m+µs+ 1
2 σ2

s


 , (35)

and inserted in (5).
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Appendix A: The Lognormal Distribution

The definition of density of normal distribution is

f(x) =
1√

2πσ2
· e− (x−µ)2

2σ2 . (36)

Φ(·) is the standard normal distribution (µ = 0 and σ = 1). A variate is lognormally
distributed if its natural logarithm is normally distributed. The definition of bivariate
normal distribution is

f(x, y) =
1

2π
√

σ2
xσ

2
y(1− ρ2)

· e−
1

2(1−ρ2)

„
(x−µx)2

σ2
x

−2ρ
(x−µx)(y−µy)

σxσy
+

(y−µy)2

σ2
y

«

. (37)

Two variates are bivariate lognormally distributed if their natural logarithms are bivariate
normally distributed. In order to be able to calculate the moments of lognormally dis-
tributed variates (1), (2), (3) and (4), the simplifications of the following special integrals
are required:

∞∫

a

ecx f(x) dx = ecµ+ 1
2
(cσ)2 · Φ

(
−a+µ+cσ2

σ

)
(38)

∞∫

−∞

∞∫

a

ecx2 f(x1, x2) dx1 dx2 = ecµ2+ 1
2
(cσ2)2 · Φ

(
−a+µ1+cρ σ1σ2

σ1

)
(39)

∞∫

−∞

∞∫

a

ex1ecx2 f(x1, x2) dx1 dx2 = eµ1+ 1
2
σ2
1+cµ2+ 1

2
(cσ2)2+cρ σ1σ2 · Φ

(
−a+µ1+σ2

1+cρ σ1σ2

σ1

)
(40)

In order to keep the proofs of (38), (39) and (40) concise in the following, it is convenient
to use the conditional density. The definition of the conditional density is

f(x2|x1) =
f(x1, x2)

f(x1)
.

If we apply this definition to the bivariate normal distribution, we get

f(x2|x1) =
1√

2πσ2
2(1− ρ2)

· e−
(x2−(µ2+ρ

σ2
σ1

(x1−µ1)))
2

2σ2
2(1−ρ2) . (41)

Note that the conditional density of the bivariate normal distribution equals the density
of the normal distribution with the parameters

µx2|x1 = µ2 + ρ
σ2

σ1

(x1 − µ1) und (42)

σ2
x2|x1

= σ2
2(1− ρ2) (43)
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We next prove equation (38).

∞∫

a

ecx · 1

σ
√

2π
· e− (x−µ)2

2σ2 dx =

∞∫

a

1

σ
√

2π
· e−x2−2xµ−2cσ2x+µ2

2σ2 dx

=

∞∫

a

1

σ
√

2π
· e−x2−2x(µ+cσ2)+µ2

2σ2 dx

=

∞∫

a

1

σ
√

2π
· e−x2−2x(µ+cσ2)+(µ+cσ2)2−(µ+cσ2)2+µ2

2σ2 dx

=

∞∫

a

1

σ
√

2π
· e− (x−(µ+cσ2))2

2σ2 · e−−(µ+cσ2)2+µ2

2σ2 dx

= ecµ+ 1
2
(cσ)2

∞∫

a

1

σ
√

2π
· e− (x−(µ+cσ2))2

2σ2 dx

Equation (38) follows with 1−Φ
(a−(µ+cσ2)

σ

)
= Φ

(−a+µ+cσ2

σ

)
. The proof for equation (39)

is given under consideration of the conditional density indicated above,

∞∫

−∞

∞∫

a

ecx2 f(x1, x2) dx1 dx2 =

∞∫

a




∞∫

−∞

ecx2 f(x2|x1) dx2


 f(x1) dx1 .

The integral in brackets can be interpreted in that the expected value and the variance
according to (42) and (43) are transformed and the equation (38) is subsequently used,

∞∫

a




∞∫

−∞

ecx2 f(x2|x1) dx2


 f(x1) dx1 =

∞∫

a

[
e

c
“
µ2+ρ

σ2
σ1

(x1−µ1)
”
+ 1

2
c2(σ2

2(1−ρ2))
]

f(x1) dx1

= e
cµ2−cρ

σ2
σ1

µ1+ 1
2
c2σ2

2− 1
2
c2σ2

2ρ2

∞∫

a

e
cρ

σ2
σ1

x1f(x1) dx1 .

If we define the helping variable c∗ := cρσ2

σ1
, we arrive at the equation (39) after application

of (38) and shortening of the terms in exponents. The proof for equation (40) can be shown
analogously,

∞∫

−∞

∞∫

a

ecx2ex1 f(x1, x2) dx1 dx2 =

∞∫

a




∞∫

−∞

ecx2 f(x2|x1) dx2


 ex1f(x1) dx1

= e
cµ2−cρ

σ2
σ1

µ1+ 1
2
c2σ2

2− 1
2
c2σ2

2ρ2

∞∫

a

e
cρ

σ2
σ1

x1+x1f(x1) dx1 .

If we define the helping variable c∗∗ := cρσ2

σ1
+ 1, we arrive at the desired result (40) after

repeated application of equation (38) and shortening of the terms in exponents.
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Appendix B: Option Pricing Using the CAPM

In order to calculate the expected value of a call (7), we use equation (38),

E [X̃c] =

∞∫

−∞

max
(
p(X̃s) ers −K, 0

)
f(rs) drs

= p(X̃s)

∞∫

ln(K/P(̃Xs))

ers f(rs) drs − K

∞∫

ln(K/P(̃Xs))

f(rs) drs

= p(X̃s)e
µs+

1
2
σ2

s · Φ
(

ln(p(X̃s)/K)+µs+σ2
s

σs

)
−KΦ

(
ln(p(X̃s)/K)+µs

σs

)
. (44)

We can simplify the calculation of the covariance through application of the decomposition
theorem. From equations (39) and (40) result

E [X̃cR̃m] =

∞∫

−∞

∞∫

−∞

max(p(X̃s) ers −K, 0) · erm f(rs, rm) drm drs

=

∞∫

−∞

∞∫

ln(K/P(̃Xs))

(p(X̃s) ers −K) · erm f(rs, rm) drm drs

= p(X̃s) ·
∞∫

−∞

∞∫

ln(K/P(̃Xs))

erserm f(rs, rm) drm drs −K ·
∞∫

−∞

∞∫

ln(K/P(̃Xs))

erm f(rs, rm) drm drs

= p(X̃s) · eµs+
1
2
σ2

s+µm+ 1
2
σ2

m+ρ σsσm · Φ
(
− ln(K/p(X̃s))+µs+σ2

s+ρ σsσm

σs

)

−K · eµm+ 1
2
σ2

m · Φ
(
− ln(K/p(X̃s))+µs+ρ σsσm

σs

)
. (45)

Following the decomposition theorem, we arrive at the covariance (8) with (44) und (45),
after elementary conversions.
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