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Abstract: This paper focuses on analysing the multi-stage assembly system with cost function, which is
widely used in the literature. We shall point out that the set of cost inputs having the same optimal
production plan is a convex cone. In addition, the structure of an optimal solution is analysed to reveal the

stability region.
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1. Introduction

The dynamic lot-size model is one of the best
known standard models in OR /MS, and the pro-
cedures for solving the problem have received
considerable attention in the literature. In ad-
dition to the optimal dynamic programming and
branch-and-bound algorithms, numerous heuris-
tics have also been developed for both single- and
multi-level problems. However, relatively little ef-
fort has been made to investigate the stability of a
schedule. The stability region of a schedule means
the set of cost inputs having the same production
plan for a given demand series.

This question is of interest for both theory and
practice. It would be useful for the practitioner to
know the range of cost parameters over which the
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optimal production is not altered. Characterizing
the shape of the stability region is the theoretical
question of interest.

. The single-level lot-sizing stability problem was
analysed by Richter (1987). Using constant set-up
and holding costs and the assumption that the
cost inputs belonging to the stability region have
the same production plan for every problem with
period ¢, t=1,2,..., T, where T is the length of
the planning horizon, he gave the explicit form of
the stability region. He also pointed out that the
stability region is a convex cone. Omitting the
need of these strong assumptions, we show that
this convex cone property can be extended to
more general multi-level problems with certain
cost functions. Analysing the structure of an opti-
mal schedule, we also show that this production
plan can be expressed by a regeneration matrix.
The advantage of this production-quantity-inde-
pendent plan definition is that this could open the
way to a discussion on the impact of the changes
in demand.
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The paper is organized as follows. Section 2
states the multi-level problem and shows that the
stability region is a convex cone. In Section 3 we
analyse the structure of an optimal solution and in
Section 4 the main results are summarised and
ideas for further research are provided.

2. The stability region of the multi-stage assembly
system

In a multi-stage assembly system, manufactur-
ing of an item requires a certain number of com-
ponents and, in turn, is itself a component of a
single parent item. The product structure in this
production process can be represented by a di-
rected acyclic network where the set of nodes
represents the set of items and the set of directed
arcs denotes the processing operations. Let the
number of items be M and let M be the only
facility which produces assemblies used to supply
the customer’s demand. Raw materials are availa-
ble in unlimited amounts as input to source facili-
ties. All facilities are allowed to carry inventories;
facilities 1 to M — 1 carry in-process inventories
while the Mth facility carries the finished good
inventory. It is_assumed that production and ship-
ment, are instantaneous, and that one unit of pro-
duction on facility m requires one unit of input
from every facility k, k € A(m), where A(m) is
the set of immediate predecessors of m. Backlog-
ging of demand is not allowed. (It is worth notic-
ing that more general product structures can be
transformed to this assembly system—see Afen-
takis and Gavish (1986).)

Let B(m) denote the unique immediate succes-
sor, while P(m) and R(m) denote the set of all
predecessors and successors of node m, respec-
tively. Then, in the assembly system represented
by Figure 1 we have B(2)= {4}, A(4)= {2, 3},
R(1)={2,4}, and P(4)= (1, 2, 3}.

Let d, denote the demand in period 7; it is
assumed that the demand is known for periods 1
to T. Let X, denote the production at facility m

\4 //

Figure 1. An assembly system

in period r; the cost of this production is denoted
C,(X,)- I, is the inventory at the end of period
¢ at facility m and the corresponding holding cost
is H,,(1,) for all me (1, M) and for all r €
(1, T'), where

{a,b)={a,a+1,....b}.

Let B(M)={M+1}.
Then the multi-stage assembly problem, prob-
lem (1), can be written as

M T
Minimize {Z Z(Cm,(X,,.,)+Hm,(1m,))}

m=1 =1
(1a)
subject to
I.=1,,1%X...— Xgim:
forall me (1, MY and 1€ (1, T), (1b)
Xyi1,=d, forall1€(1,T), (1¢)
L,,=1,,=0, I,>0 X, >0
forall me (1, M) and 1€ (1, T). (1d)

When cost functions C and H are concave,
Veinott (1969) showed that a node can have at
most one positive input in an extreme point solu-
tion, i.e., I X,,,= 0. Now let

ma—1" m
& b s,+c,X,, forX >0,
mi(Xmi) = 0 for X, =0,
and
Hmr(]m1)=hmlm1’ hB(m)th’
forall me (1, M) and r (1, T);
then (1a) can be written as
M T T
Minimize { Z (sm Z Yz T Cm Z X,
m=1 =1 =1
T
+hmz Iml)}’
=1

where y,,, € (0,1}, X, <Ny,,, and N is a large
positive number, or

M 7
Minimize { Yy (sm > Y. +de,

m=1 =1

+h,, zrj 1",,)}, (1a)’

r=1

where d=Y7_.d,.
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Further, let there be a demand series given. For
cost inputs we use the following notations: s’ =
(SpseeesSp)s B =(hp,..shyy), € =(cpyeanyCpp)s
and d’'=(d, d,...,d), where primes denote
transposition. Now let us consider an optimal
solution X?, of problem (1) with cost function
(1a)’ and let matrix X° be of order M X T with
X°={%%]

Let SR(X®) denote the set of cost inputs for
which problem (1) has an optimal schedule with
production plan X°. SR(X°) is called the stability
region.

Theorem 1. SR(X®) is a convex cone in R*™.

Proof. If (s'c’h’) € SR(X?), then it can easily be
seen that A(s’¢’h’) € SR(X°®), A > 0, by multiply-
ing the entire cost function by a constant. Let
(3'¢’h’) be a cost vector for which there is no A
such that

A(s'e'W') = (§&R").

If (s‘:_é’f:') € SR(X°), then we have to show that
(§'¢’h’) € SR(X°), where

§Eh')=N(s"e’h’) + (1 —\)(5'¢'R")

and 0 < A < 1. But if a solution is optimal for two
cost vectors, then it is optimal for their sum, too.
O

(It is easy to see that the theorem is also true
for time-dependent costs.)

3. Analysing the structure of an optimal solution

Next we show that X° can be defined by a
regeneration matrix. For this purpose let us analyse
the structure of an optimal solution of problem

D).

Definition. A schedule is nested if X,,, > 0 implies
that Xg,,,,> 0. Period ¢ is an m-level regenera-
tion point in a T period problem if I, =0 for all
J € R(m).

Crowston and Wagner (1973) pointed out that,
with cost function (1a)’, problem (1) has a nested
optimal schedule.

Let /,(t) and r be adjacent m-level regenera-
tion points in a T period problem, /,,(z) <t, and
matrix Jr be of order M X T; J.=[},, ], where

[.(k) if k is an m-level regeneration
point in a T period problem,

Lmk
k otherwise.

J; is called the T period regeneration matrix.

Production Condition. X, > 0 iff period r—1 is
an m-level regeneration point.

Lemma 1. A4 schedule satisfying the Production
Condition is a nested schedule.

Lemma 2. Let a regeneration matrix Jr be given.
Then the following schedule defined on Jr is nested:
X, ifl (1) +1=1,

B(m).t

_ 4
Xm./m(r)+1 - Z XB

r={_(r)y+1

ifl, (1) +1<z,

(m),r

(2)
and
Xos =0 U Jyo,=r—1
forme (1, M) (X, ,,=d,).

Proof. The schedule satisfies the Production
Condition thus it is nested. O

Let s™(¢) and A™(z) denote the total number
of set-ups and the total inventory, respectively, at
the m-th stage in the first ¢ periods with the
provison that period ¢ is an m-level regeneration
point. Let

t
o= Y, (r—=1-1)Xg,, fori<t. (3)
r=I[l+1
with the assumption that / and ¢ are neighbouring
m-level regeneration points.
Thus we can write

A™(0) =0,

R7(t) = "1 (1)) + B[ ye0 (4)
and

s™(0) =0,

s™(t)=s"(1,(1)) +1, (5)
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where ¢ is an m-level regeneration point in the
T-period problem.

Example. Let

|1 0 2

% [1 0 2]’

ie, M=2, T=3and A(2)={1)}. Then,
s'(3) =2, h'(3) =0,

g2(3) =2, h*(3) =d,.

The schedule defined by J; is shown in Figure 2.

Lemma 3. Ler J. be a regeneration matrix and
Cr(s’c’h’) be the cost value of an optimal nested
schedule for cost inputs (s’c’h’) in the T period
problem. Then,

Cr(s’c’h’)=s's(T)+c'd+hh(T),
where

s(T) =(sNT),...,s™(T)),
h(T) =(n(T),..., h™(T)).

The proof of Lemma 3 simply follows from the
definition of the parameters.

Lemma 4. (s'¢’h’) € SR(J) iff there is no Jy. for
which
s'S(T)+c'd+hh(T)<s's(T)+c'd+h'h(T),

(6)
where 3(T), h(T) and s(T), h(T) are defined on
Jr and J;. respectively.

As, for example with the help of T-element
binary numbers beginning with 1, all regeneration
matrices can easily be generated, Lemma 4 offers

0

v

1 12 13

v l

21— 22 23
N l l
d1 d2 d3

Figure 2. The schedule defined by J;

SR

N
7

1 ho
Figure 3. The stability region of facility 2, provided that s, =5,
hy=1

a simple enumeration procedure for exhibiting the
stability region. Then, applying (6) for J; defined
earlier, SR(J;) is determined by the following
inquality system for d; =1, d, =2, d;=25:

3s, +3s, > 25, + 25, + 2h,,

2s, +3s, + 5h, > 25, + 25, + 2h,,

25, +3s,+ 2h, > 28+ 25, + 2h,,

5+ 5, +12h,> 25, + 25, + 2h,.

Fixing s, =5 and A, =1 the schedule given by J,
does not change if s, and 4, satisfy the following
system:

10k, — 525,22k, —2, 5,20, hy>1.

Figure 3 shows the stability region of facility 2.

4. Summary

This paper has analysed the multi-stage assem-
bly system and stated that its stability region is a
convex cone. It is shown that an optimal nested
schedule can be expressed with the help of a
regeneration matrix which is useful in the enumer-
ation procedure used for revealing the stability
region. The regeneration matrix is a quantity-inde-
pendent plan representation. However, the enu-
meration procedure is exponential in complexity.
For the facilities in the series inventory problem, a
dynamic programming type (see Chand, 1983)
procedure would increase the quickness of compu-
tation if we were interested in revealing the sta-
bility region of costs having the same m + 1 level
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regeneration points for every possible combina-
tion of neighbouring m level regeneration points,
m € (1, M — 1). (This would mean the direct ex-
tension of Richter’s result for the multi-stage
problem using the solution of the linear inequality
system.) However, even for the single-level prob-
lem, practice does not need this assumption. Thus,
the challenging task for the researchers in this
field remains: to find, under mild conditions, ef-
fective algorithms for revealing SR(J).

Because of its practical importance, further re-
search may tend to analyse the effect of changes
in demand forecasting (for single-level problems,
see Richter and Voros, 1988).
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