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ABSTRACT

The serial assembly model is considered. The
problem isformulated toJind sets of cost inputs
for which solutibns found by a recursion proce-
dure remain valid. For simplicity a solution of
this problem is provided for the two-stage prob-
lem. The paper shows that the stability region

of cost inputs forms a convex cone in Ra and
consists of a system of linear inequalities. An al-
gorithm is provided to compute the parameters
ofthis cone and several cases ofchanging only
two parameters are displayed graphically.

1. THE MULTI-STAGE SERIAL ASSEM.
BLY PROBLEM

This well-known model has been studied by
many authors (Zangwill I I ], Love [2 ], Lam-
brecht et al. [3], Graves [4], Blackburn and
Mil len [5], Chand [6], Afentakis et al. [7] ).
A comprehensive formulation of the problem
is given below:

s r
min f | (c,signx",*ft"/",)

,trb:".,',",

In=1r , ,_ r  *JCr r - r r+ r . ,  s=  1 , . . . ,S ,  t=  1 , . . , ,7

s :1 , . . . ,S ,  t - 1 , . . . , 7  (p )

s= 1, . . . ,S

t = 1 , . . . , 7

This model has the following economic
interpretation: A production-inventory sys-
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tem consists of ,S facilities in series. The input
to facility r+ I comes from facility s. Facility S
produces assemblies which are used to supply
the customer demand d, for periods t:1,...,7.
All facilities may carry inventories. It is as-
sumed that production and shipment are in-
stantaneous and that one unit ofproduction at
facility s* I requires one unit of input from fa-
cility s. Backlogging of demand is not allowed.
Let x", denote the production at facility s in pe-
riod r, and the cost of production be provided
by c,sign x",. The stock at the end of t-th period
at facility s is denoted by.I"r. The holding cost
is provide by hJn. It is easy to see that the
model has been designed to determine a mini-
mum cost production and inventory strategy
for S facilities and 7" periods which meets the
demand of all periods.

It is also well known that there are optimal
solutions for this type of model which fulhl

xn20, 1,,20

1o=/"r=0

Xs+ t , t=  d t
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2

Fig. l. Network interpretation of the two-stage problem.

/",r- tI"r:0

and

rs+r,r)0 i fxrr>0.

Based on these properties algorithms have been
designed which employ the idea of dynamic
programming. The question is what will hap-
pen if the data, i.e., cost inputs, change. If the
stability region of a given optimal solution can
be determined and we are able to indicate all
inputs, for which the solution is optimal, it is
possible to answer such a question. In other
words, a decision can be prepared whether in-
put changes force the strategy of production
and inventory control to be revised. The prob-
lem under study has been considered for the
one-stage case (cf. [8,9,10,1 I ] ). In this sense
the results below may be regarded as a gener-
alization. A complete solution for the two-stage
model will be provided in the next two sec-
tions. kt an example be regarded before
studying the algorithm.

Example

I * t  T:3,  d1:J ,  dz:2,  d t : | ,  Cr :4,  Cz:S,
är: I and hz:Z. The problem can be viewed
as a network problem of the following type (see
Fig. I ). An optimal solution to the problem is
provided by a flow from node (0,1) to the
nodes (2,1)-(2,3), if the flow satishes the de-
mand and minimizes the cost along the arcs.
The flow drawn in small circles in the figure
shows a feasible solution with cost
4+4+5+5+2X2:22.  I t  w i l l  be seen la ter
that this is not the optimal solution.

2. SOLVING THE TWO-STAGE PROBLEM

Chands's algorithm will be studied for the
case of two facilities. It employs the following
idea:

Euery solution diuides the periods into such
groupsfor which the production at thertr$ stage
is performed only in thelirst period of the group.

The solution provided in Fig. I divides the
three periods into two groups, U,2\ and {3}.
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d2 d3 d4 d5

Fig. 2. Network interpretation of a complex solution.

In all these gtroups subgroups can be found for
which the production at the second stage is
performed only in the first period of the
subgroup. In the example of Section I the
groups and subgroups coincide. In more com-
plex problems the situation may be similar to
that in Fig.2.

The algorithm will, on the one hand, find the
optimal decomposition of gxoups of arbitrary
lenglh into subgroups, and on the other hand,
on the basis of this information determine the
optimal decomposition of the periods 1,..., T
into groups. Then the solution of the problem
will be obviously on hand.

Let arbitrary periods r( / be regarded and let
C(r,T) denote the minimal sum of holding
costs for both stages and production cost at the
second stage for the periods r,r* I,...,t. C(r,t)
can be determined by the typical dynamic pro-
gramming philosophy:

n

c(r,t)= min {c2*i2 L diU -r)
r < u < ,  j = r + l

+ h , ( n * r - t l  i  d j + C ( n + t , t ) 1 .  ( 1 )
j - n +  |

The optimal period n is denoted by n (r,r). In
this recursion

n

H2(r ,n)= |  d ,Q-r)
j= r+  I

provides the stock at the second stage associ-
ated with storing the items needed in r* 1,...,n,
and

I

Hl ( r , n , t ) : ( n+ l - r )  |  d1
j - a + l

covers the stock at the first stage associated
with storing items needed at the second stage
in periods r,r*1,...,n. In Fig. 2 these parame-
ters show the values H2(1,2):d2 and
H l  ( 1 , 2 , 4 \ : 2 ( & +  d 4 ) .

Now let /(r) denote the minimal total cost
for the problem with the periods t,t+1,..., T.
Then, obviously,

f l r )  =  min  {c r+C(r ,n )+ f (n+ l ) }
r < r < l

holds according to the dynamic ptogtu--iog
approach. The optimal parameter n will be de-
noted by n(r).

The complete algorithm can be described in
computer language, as shown in Fig. 3. The pa-
rameters Hl and H2 are included in the output
since they will be used for the stability analysis
in the next section.

The application of the algorithm AL to the
example from Sectionl provides the outputs

{n  ( r )  }

{ n ( r , t ) }

{Hr  ( l ,n , t ) }

{H2(r, t ))

.f (r)

( 2 )

=  (3 ,3 ,3 )

[:1]l
= 
[:i; ] {H'�(z'n''�)}= [- t; J

[:il ]
=  (  1 7 , 1  1 , 9 ) .
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Algorithm AL

input: c.t ,  c2, h.,  h2, d.t , . . . ,  d,
f l f +  1 ) : = 0
for r= f downto 1 do
begin for f= rto t do

begin determine l-f2lr, ö
for n= rto t do determine H1(r,n,tt
determine Clr,l and nlr,tl

end
flr):  =min {c, + C(r,t)  + r lr* 1}:r( r( f}
determine n(i

end
output: n(i ,  nlr, t l ,  H1lr,n,t l , l+2(r,t l ,  f l i .

Fig. 3. Algori thm,AL.

Algorithm ALI

input:n(r),  n(r, t l ,  1 < r< t< T
r  _ , |

while r< Ido
begin t =n(r)

x1,:=2j-,  di
, : , : ; ,* 1 to rdo x,, :=o

while n< r do
begin

t1:. = n(n,t)
x2n:=lj!nd1
tor  j=n l -1 to f1  dox2 j :=O
n : = t 1 * 1

end
?  -  t +  1

end
output: x". s- 1 ,2, t-  1,. . . ,  T

Fig. 4. Algori thm AL1.

Thus the minimal value of the example is given
by"f( I ) : 17. The solution of the problem can
be found by the algorithm stated in Fig. 4.The
application of algorithm ALI generates the
solution

/ 6 0 0 \" = \ o  
o  o / '

which really is associated with the cost:
4 + 5 +  ( 2 x 3 )  +  ( 2 x  1 )  =  1 7 .

3. DETERMINING THE STABILITY
REGION

The question now is how ct, cz, h1, h2 may
change without affecting the values n (r) and

n(r,t) and, therefore, leaving the solution gen-
erated by algorithm ALI valid. Let us note that
the set of ce c2, hr, hz answering this question
may be only a subset of the real stability re-
gion. This can happen since the actual solution
may also be derived from other n (r) and
n(r,t). Finding the complete stability region is
therefore a problem of studying all possible
n(r) and n(r,t) in the case of nonunique pa-
rameters. This will be left for further research.

Let the expressions of the right hand side of
( I ) and (2 ) be denoted by c(r,n,t) andf(r,n),
respectively. Then the following theorems can
be formulated.

Theorem 1. The optimal parameters n(r) and
n(r,t) remain valid for allc1, c2, är, äz such that

C(r , t )=C(r ,n(r , t ) , t )4C(r ,n, t ) ,  rs<z( / ,  (3)

_f(r) =f(r,n(r) ) <-f(r,n), r<n< 7 '

Theorem 2. The set of all ct, cz, hv i2 satisfy-
ing the inequalities (3) form a convex poly-
hedral cone in the Ra.

Theorem I certainly needs no more argu-
ments to be accepted. In order to discuss the
second theorem let the following new parame-
ters be introduced:
K(s,r,t): optimal number of setups at the s-

th stage for the periods r,..., t, and
H(s,r,t): optimal stock at the s-th stage for

the periods r,..., t.
These parameters can be derived from the out-
puts of algorithm AL. Then

C(r ,n, t )  -  h lHl  ( r ,n , t )+h2H2(r ,n)

*  c2( l  *  K(2,n+ |  , t )  )

+ htH( l ,n+ l , t )  *  h2H(2,n*  l , t )  (4)

and

f( r ,n\  :  c1 (  I  +K( l ,n+ l ,T)  )

* c2(K(2,r ,n) *  K(2,n* l ,T) )

+  h ( H ( r , r , n ) *  H ( l , n +  l , T ) )

*h2(H(Z, r ,n )+H(2 ,n+ l ,T) )  (5 )



l K ( t , r , T ) | =  (  l , l , l  )

( t  I  l \

i r (2,r. t)) : \-  
:  i )

hold. It is clear that the application of the
expressions (4) and (5) to the inequalities (3)
provides a system of linear inequalities with the
variables cr, c2, hr, hr. Since that system is ob-
viously homogeneous the set must be a convex
polyhedral cone.

The system (3 ) is not suitable for computa-
tion. Let, therefore, the parameters K(s,r,t) and
H(s,r,t) be determined by the algorithm de-
picted in Fig. 5. This algorithm finds system-
atically all the values needed. Its application to
the data of the output of the algorithm AL pro-
vides the following information:

Now let the inequalities ( 3 ) be transformed
using the new symbols. Then
h , [H r  ( r , n , t )  +  H (L ,n+  t , t )  -  H ( t , r , t ) )

*  hz[H2(r ,n)  1-  H(2,n*  t , t )  -  H(2,r , t ) ]

> c 2 l K ( Z , r , t ) - t - K ( Z , n + t , t ) l  ( 6 )

and

h , l H  ( 1  , r , n )  +  H  ( r , n +  | , T )  -  H  ( t  , r , t )  )

+  h2 [H(2 , r , n )  +  H (2 ,n+  r ,T )  -  H (Z , r , t ) ]

2  c , [ K ( l , r , T )  -  1 -  K ( t , n +  t , T ) ]

+ c2[K(2,r ,7)  -  K(2,r ,n)  -  K(2,n+ |  ,T)  |  (7 )

will be obtained for all I ( r( n < /< f.
Hence, the following theorem will summa-

rize the results.

Theorem 3. The stability region of the pa-
rameters n ( r) and n(r,t) is correctly described
bytheinequalit ies (6) and (7).
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Algorithm KS

input: n(s), nlr, t l ,  H' l(r ,n,4, l{2(r,1, 1 < r< r< f
for r- f downto 1 do
begin n: - n(r)

Kl1 ,r ,1):  = ' l  + K(1 ,n+ 1 ,n
for t=rto f do
begin t1 := r

H A : = H B : = K A : - O
w h i l e r l < r d o
begin n1 := nlt l  , t t

HA:  =  H,A *  H1 ( t1  ,n1  , l
H B : = H B * F / 2 ( r l , n 1 l
KA: :K .A+ 1
t 1 : . = n 1  1 1

end
H ( 1 , e t ) : = H A
H(2,r,t l :=HB
K(2,r,t l :=KA

end
K(2, r, ö : = K(2, r, nl + K(2, n + 1, I
H(1 ,r, t l : :  Hl1 ,r,nl * Hl1 ,n+ 1 ,n
Hl2 , r , f l :=H(2 , r ,n l+  H(1  ,n+  1 ,7 )

end
output; Kl1 ,r, f l ,  K(2,r,0, H(1 ,r,1, Hl2,r, l ,  1 <r< r< f

Remark: All parameters are supposed to be set zero in the
algorithm if second index r is greater than the third one t

Fig. 5. Algori thm KS.

These inequalities are for the example of
Section I of the following form:

2hr -2h2>-  -c2

3 h r - 3 h 2 7  - c 2

h1-  h2) -  -c2

h 2 7  - c 1 - c 7  ( 8  )

- 3 h r 2  - c r - c z

- 2 h r 2  - c r - c z

-  h z 7  - c r , - c z

While it seems to be hard to interprete the
full system ( 8 ), several special cases may be of
interest (cf. Figs. 6-9).
(i) Production cost inputs remain constant,

i .e . ,  c1:4 and cz:5,  then h243,
2 ( h 2 -  h t )  <  5 ,  3  ( h 2 -  h t )  < 5 .

(ii) Holding cost inputs remain constant, i.e.,
h r : l  and  hz :Z ,  t hen  c ,  * c276 ,  c2>3 .

/ 0 0 0 \
{a(r , r , r t }=( -  

:  : , )

/ 0 2 4 \
t I l ( 2 . ' . , ) ) : ( _ :  , )
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t)

5

h.th^

Fig. 6. cr, c2 fixed.

Fig. 8. cr, c2 fixed.

(iii) Cost inputs of the first stage remain con-
stant, i .e., cr:4 and ht:\ ,  then
3 h2 - c2<3, 2h2- c242, h2- c24 l.

(iv) Cost inputs of the second stage remain
constant, i.e., c2:5 and hz:2, then ct 2 1,
3 h t > ' l '

These four cases illustrate different cuts into
the stability region by fixing the values of two
cost inputs. Thus, subsets of the stability re-
gion occur, which can be graphically dis-
played. Such a partial look at system (8 ) seems
to be the only way to use the "four-dimen-

sional" information for economic analvsis.
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1
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