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Summary:

A two stage EOQ model for manufacturing, repairing and disposing psodudiscussed.

First the lot size function and the minimal cost function is derivethe waste disposal rate
of products and an economically optimal waste disposal rate isruieter. Secondly this rate
is regarded as a function of the waste disposal cost (or prideha behavior of this convex-
concave function is analysed. Third, in a dual problem the waste digpasals analysed

which maximizes the income of a price dictator.
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1. The model
1.1. Introduction

A two stage EOQ model describing the manufacturing (or order) of néwtha repair of used
products (for instance, containers) in a first shop and the employmémé¢ @roducts in a
second shop is offered in this paper. The used products can either deastbeesecond shop
and after some time be brought back to the first shop for repair, dispesed somewhere
outside. For the first shop economic order quantities have to be det@rimimeew products
and for repairable products in order to meet the constant demand thie scond shop.
Some of the used products are collected at the second shop accordingertaira not
necessarily unique repair rate. The share of the products not providegdoris called waste
disposal rate.

Ordinary multi stage EOQ models have been studied long ago [2,5,6]ntireaepaper
appeared which also focuses on repairing and scrapping products (compof4he last
years EOQ models have been used extensively to explain severaltipmoguenomena.
Some overview showing the various applications is provided in [1]. Our prerbe
regarded as another attempt to apply the EOQ framework to produttiatioss, this time to
problems appearing with the alternatives to repair or to dispose used products.

The repair rate, which displays the ecological behavior of the prqdiscéixed in [4].
Pushing this rate up one might contribute to an increasing ecolagieaitation of the



production, and it is clearly of interest to trace the econommaderuences of alternative
repair and waste disposal rates to production. As in other studiesimiplecity of the EOQ
model allows to show directly the relationship between model inputs, betiveen the
ecological cost (waste disposal price) and ecological behavistgwigsposal rate). If more
practical situations are modelled, this chance of expressing(tieierelationship between
ecological and economical parameters probably gets lost. Odlézssare, of course, needed
to prove the applicability of the presented approach in a more practical framework.

1.2. Assumptions

The model is based on the following assumptions:

A Technological assumptions:

(1) A first shop is providing a homogenuous product used by a second shoprestant
demand rate ofl units per time unit.

(i)  The first shop is manufaturing new products and also repairiogupts used by the
second shop. The repaired products are then regarded as new.

(i)  The products are used by the second shop and collected therdiagdo a repair
rateS. The other products are immediately disposed as waste outside (waste disposal
rate a=1 - f).

(iv)  After some variable time interval the collected products are brought back to the first
shop and will be repaired. If the repaired products are finished #&maifacturing
process starts to cover the remaining demand for the time interval.

(v)  The processes of manufacturing, repairing and using the products are instantaneous.

The inventory stocks occuring in this system are illustrated by Fig. 1
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Fig. 1: Inventory stock at the first and second shops
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Cost assumptions:

Fixed cost for a time interval
Per unit cost/price of manufacturing, repairing and disposing prodydtse
Per unit per time unit holding cost at first and second shpp:

Notations:

Waste disposal rate and repair rates, a+ =1
Demand rated

Lot size of a time interval: X

Over all cost for a time intervak,

Size of disposal and repair lot, X

Objectives:

The minimal per time unit over all cost for the producer is to be determined.
The maximal per unit income of the disposal price dictator is to be determine

1.3. Themode and major properties

The over all cost for a variable time interv@l, T] is

K, =M + aTd(b+e) + hax./2d +BTdk + hBx./2d + yBTx/2. 1)

According to the first objective, the per time unit cost for the producer is to be medimiz

or

K = KJT = dM/x + g[( & + P)h + 4] + d[ a(b+e)+5] — min,

K= dM/x + % H(a) + d P(a), )

where the inventory cost

H(a) = (a2 + A)h + fu = 2a2h -a(2h+u)+h+u (3)



and the production cost

P(a) = alb+e)+fk = k - a(k-b-e)

are regarded as functions@fand of g, if this is of greater interest.)

The optimal lot size is

*:\/ 2dM 2dM 4

o +A)+up | H(@)'
and the lots of disposed and repaired productgigem byax* and [x*.

The minimal cost function is then

K*= \2dM(ha? + &) + yB) + d( b+ da+ 1B = J2dMH (a) + dF(a). (5)

It can be shown that for arbitramy h >0 and for alla 0[0,1] the inequatiorH(a) > 0 holds,
so that the square root terms above are always real

2. Analysis of the minimal cost function

2.1. The optimal waste disposal rate

Let the waste disposal rate be variable within soav®e[ dmin,dmax- The question is
which rate is minimal with respect to function (®)rst conditions for the convexity of the
function (5) are provided:

Lemma 1: The function (5) is convex ia iff

4h(h+u)> u? (6)

holds

Proof: If the formula (3) is used to express the costfian K, then

K* = H'(a) - vV2dM /2\/H(a) + (e-k) holds.
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H'(a)H(a) - H*(a)l 2
' H(a)¥2 .
A straightforward analysis shows that for the selcderivative
K**  =C - [4h(h+u) - (2h+u)/2]= C - (2h(h+u)-u/2)
holds, with a positive consta@t ThenK*' > 0 if and only if the condition of the theorem
holds. "

The second derivative is thé&*" = + < /dM / 4

The set of pointgh, u)which fulfil condition (6) forms a convex cone K.
It can be shown that the lot size functidiia) is concave under the same conditions

Example:.LetM =$ 100, d =10 units, h=%$6,u=%$4,k=%16=%$0,e=%$8
a [7[0.1, 0.9].

Then the function (4) is illustrated by Fig. 2.
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Fig. 2: Minimal cost as a function of the waste dispoaté r
If a=0.5 then lot size isx* = 20 and the minimal cost i€* = $ 170. Since this function is

convex, the minimum can be found again by the apfin of calculus. If the value of the
disposal rate is

a* Ol amin Omax:

then it is the optimal rate. In the other case ohehe bounds is optimal. For the given
example the optimal disposal ratenfs= 0.5855. *



2.2. The optimal waste disposal rate as a function of the waste disposal price

Now, the valuex* is studied to see how it reacts at changes iw#ste disposal price

Theorem: Provided the inequality (6) holds, the optimal wadisposal rate is

a*(e) =

2h+u k—b—e\/ d(4(h+ u) h- &) @

4h 4h  \4hM -d(k- b- &’
if this value is feasible. In the other case onthefbounds is the optimal waste disposal rate.

Proof: Leto=k-b - e and H(a) = ac?+ba+c, H'(a) = 2aa+b, H"(x) = 2a
with a = 2h, b =-2h-u, ¢ = h+u.
Then

K* = M agrb) - do=0,
2(aa” +ba+ ¢)

i.e. +dM/2 -(2ao+b) =dd-Vaa®+aa+c s to be solved.

That leads to
Mb? -2ddc _

a?+bla-a+ —; > =
4a°M - 2ado

with the solutions
[0*  2d&c |d |d(4ac- 1)
a=-bl2at ,[—-——- = -b/lat— | —"—~.
4a®> 2add’ 2a\ 2aM -d&?

Replacing the parameteaisb, cand discussing the signs formula (7) arises.
The cost function is convex due to the assumptirafd the waste disposal rate is optimal
because of this convexity. ”

For the example the optimal waste disposal ratrigrated in Fig. 3.
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Fig. 3: Optimal waste disposal rate as a function of testevdisposal price

The expression (7) and the figure make clear timbptimal waste disposal rate is a convex-
concave function of the waste disposal price. Timre changes influence the disposal rate
quite differently: For small and for large priceputs the rate is more sensitive to the price
variation than in the case of moderate price inplfitdhe cost inputs are very small or very
large, then there is no sensitivity at all, becairgedisposal rate forced Igflies outside the
feasibility region.

The impact ofe on a* can also be expressed in a different way by raevgifi’) in terms of
inventory costs:

H(a®)

: (8)
mﬂy—y)

ae)= a°+ 3

wherea® is the disposal rate which minimizes the inventgt functiorH(a). Formula (8)
shows thatr* depends om only by the cost differencé=k - b - e.lf d= 0 (cost balance)
thena* = @° minimizesH(a) because in this case only the total holding costlesvant. In
the other case”’ is shifted by a term depending 6n

If the holding cost is the same for both the shaps, u = h, then for the cost balance case
holds a*(k-b) = 3/4. In other words, in this case it is optimal to re@6% and to dispose
75% of the product. The convex-concave behavidh®bptimal waste disposal rate is proved
below.



Lemma 2: Provided relation (6) holdsr*(e) is a convex-concave function.

Proof: First, let the casee < k-b be considered. Then the variable ge)of the formula
(8) will be studied. Denoting the constantsgndD the formula

_ | C(k-b-#?
g(e) = \/D_(k_b_ o7

arises. The straightforward analysis shows thistion to be convex. Then, howeveri(e) is
also convex. The concavity of the function for titber cases > k-bfollows by analoguous
reasons. )

3. The optimal waste disposal price
3.1. Theproblem
Let the waste disposal prieeappear outside, for instance be dictated by santteoaty. If,
according to the second objective, this authostynaximizing its per time unit income from
the disposal activities of the cost minimizing puodr, it tries to maximize the function

f(e) = da*(e)e, 9)
subject to some restriction for the priee// [enin » €nhad:, Provided it has sufficient
information about the producer. Since the constdnican be dropped, onlyf(e) = a*(e)e
will be studied. Furthermore only the case of

a*(Emin) < Omax anda*(eémax) > Amin (10)

is considered here. These inequalities securdtihanaximal income will not be provided by
prices forcing the producer to apply the minimahm@ximal waste disposal rates.



For the above example this function is shown in Eig
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Fig. 4: Income as a function of the waste disposal pricdlfe feasible price region [1, 16];
the behaviour off(e) outside this region is indicated by a dotted line.

It can be seen that there is such a waste dispwsz# which maximizes the income.
Unfortunately, no analytic expression for the ineomaximizing disposal price could be
found so far. Fig. 4 and simulation makes cleat tha optimal price is somewhere in the
neighborhood ofe* = $ 10.50 with f(e*) = $ 5.0123 anda*(e*) = 0.48.

The price dictator gains a per time unit incomedd{e*) = $ 50.123, if it sets a price of

$ 10.50 and forces by this price the cost minimizing prostuto disposd8% of its products
as waste.

3.2. Thenearly optimal waste disposal price

The optimal price can be determined roughly if thgposal rate is replaced by its linear
approximation

g(e) =a° + pleth-k) (10)
. Qo — i
with p=—m__—m = g° = g*k-b), a*(e)=a,,, anda*(e,)=a,,.
€&-§
Then the problem (8) reduces tt{e) = g(e)e = @+ o(b-k))e toe? - max, (11)
and calculus will provide the "optimal” price’ = %jj_k). (12)



For the data used so far, i. e. M+ $ 100, d=10, k=$6, h=$6,u=%$4,b=% @, =0.1,
a..., = 0.9,the valuep =-0.8/16 = -0.05can be used as approximation. Then

e'=$ (20/3 + 3) = $ 9.66holds i. e. the disposal price is near the optimal one.

4. Conclusion

In this very simple situation an optimal waste disg rate exists and the reaction of a cost
minimizer to the changes of the waste disposakpran be traced. It will be of interest to ask
the same questions for problems with many itemsafoonvex repair cost function and for

holding cost depending on the repair rate. An ditagxpression for the optimal price would
give the chance to trace also the price reactiothemrthanges of other model inputs.
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